
TurboForth Assembler V1.0

TurboForth
TMS9900
Assembler
Version 1.0

For TurboForth V1.1

Ported by Mark Wills from the original
TI-Forth Assembler source code

1 of 30

TurboForth Assembler V1.0

Table of Contents
1 -Introduction to the TurboForth 9900 Assembler..3
2 -TMS900 Assembly Mnemonics...3
3 -TurboForth's Workspace Registers...4
4 -Using the Assembler ...5
5 -TMS9900 Addressing Modes with the Forth Assembler ..5

5.1 -Workspace Register Addressing...5
5.2 -Symbolic Memory Addressing...6
5.3 -Workspace Register Indirect Addressing..7
5.4 -Workspace Register Indirect Auto-Increment Addressing...8
5.5 -Indexed Memory Addressing...9
5.6 -Addressing Mode Words for Special Registers..9

6 -Structured Assembler Constructs...10
7 -Assembler Jump Tokens...11

7.1 -Assembly Example for Structured Constructs...12
8 -Test Code..13

8.1 -Add two numbers...13
8.2 -Fill screen with a character...13
8.3 -Nested Delay..15

9 -General Usage Notes..16
9.1 -Using Your Own Workspace..16
9.2 -Calling Other Code Words...16
9.3 -Mixing Forth and Assembly Language in an :ASM Definition...19
9.4 -Accessing Forth Strings from Assembly Language...21

10 -TurboForth Assembler Code..26
10.1 -Errors Corrected from the Original Source Code...29

11 -Conclusion..30

2 of 30

TurboForth Assembler V1.0

1 - Introduction to the TurboForth 9900 Assembler
The assembler presented here is ported from the original FIG Forth implementation for TI Forth,
modified for use with F83 TurboForth by Mark Wills.

The assembler is typical of assemblers supplied with Forth systems; it provides the capability of
using all the op-codes of the TMS9900 as well as the ability to use structured assembly instructions.

Labels are not supported; they are not actually required, since the assembler adds high-level control
structures such as IF,...ENDIF, and BEGIN,...WHILE,...REPEAT, making labels completely
redundant.

The complete Forth language is available to the user to assist in macro type assembly if desired.
The assembler uses the standard Forth convention of Reverse Polish Notation (RPN) for each
instruction. For example the instruction to add register 1 to register 2 is:

R1 R2 A,
As can be seen in the above example, the 'add' instruction mnemonic is followed by a comma.
Every op-code in the assembler is followed by a comma. The significance is that when the op-code
is reached during the assembly process, the instruction is compiled into the dictionary at that point.
The comma convention serves as a reminder of this compile operation. It also serves to assist in
differentiating assembler words from the rest of the words in the Forth language. Note that the
order in which registers and other operands are specified is exactly the same as standard 9900
assembly language.

2 - TMS900 Assembly Mnemonics
A, JEQ, RSET,
AB, JGT, RTWP,
ABS, JH, S,
AI, JHE, SB,
ANDI, JL, SBO,
B, JLE, SBZ,
BL, JLT, SETO,
BLWP, JMP, SLA,
CMP, JNC, SOC,
CB, JNE, SOCB,
CI, JNO, SRA,
CKOF, JOC, SRC,
CKON, JOP, SRL,
CLR, LDCR, STCR,
COC, LI, STST,
CZC, LIMI, STWP,
DEC, LREX, SWPB,
DECT, LWPI, SZC,
DIV, MOV, SZBC,
IDLE, MOVB, TB,
INC, MPY, X,
INCT, NEG, XOP,
INV, ORI, XOR,

3 of 30

TurboForth Assembler V1.0

The above words are available when the assembler is loaded. Note that the 9900 instruction C
(compare) has been renamed to CMP, - this is to avoid collision with the standard Forth word C,
which is used to compile a byte to memory.

3 - TurboForth's Workspace Registers
Most assembly code in Forth will probably use the Forth workspace registers. The following table
describes the register allocation.

Register
Name

Usage

R0 Available.
R1 Available.
R2 Available.

IP (R3) Interpretive pointer.
SP (R4) Stack pointer.
RP (R5) Return stack pointer.
W (R6) Inner interpreter current word pointer.
R7 Available.
R8 Available.
R9 Available.
R10 Available.
R11 Available.

NEXT (R12)
Points to the next instruction fetch routine at >8328.
May be used as long its value is restored before
returning to the TurboForth environment.

R13 Available.
R14 Available.
R15 Available.

As can be seen from the above table, the only registers that absolutely must not be changed are R3,
R4, R5 and R12. Whilst R6 is used it is transitory and can generally be used in an assembly
language word. All other registers may be used, however it should be noted that TurboForth code
words (the words inside the TurboForth dictionary implemented in machine code) also use these
registers (obviously). Therefore, if you wish to persist data between assembly language routines you
should either use the stack, or use a seperate workspace. Please see section 9.1, Using Your Own
Workspace, page 16 and 9.2, Calling Other Code Words, page 16 for more information.

4 of 30

TurboForth Assembler V1.0

4 - Using the Assembler
To use the assembler, simply load it from the appropriate block. Assembly definitions begin with
the word ASM: and end with the word ;ASM. The following example copies the current frame
count (from the VDP interrupt) to the stack:
ASM: FRAME
 SP INCT, \ make space on stack
 *SP CLR, \ zero the top of stack
 $8379 @() *SP MOVB, \ move to stack
 *SP SWPB, \ move to low byte
;ASM
To run the example, just type FRAME, and a value will be pushed to the stack.

5 - TMS9900 Addressing Modes with the Forth Assembler
All of the addressing modes of the 9900 are supported by the assembler. Each of the following
examples will show both the Forth assembler code for various instructions, and the more
conventional TMS9900 assembly method of coding the same instructions. The TurboForth version
of the assembler has been enhanced with some additional functionality with respect to addressing
modes, which considerably improve the readability of the resulting assembly code. This is
indicated where appropriate in the following sections.

5.1 - Workspace Register Addressing
TMS9900 registers in Forth assembler are referenced directly by number:

Forth Assembler Conventional Assembler
ASM: EX1 DEF EX1
 1 2 A, EX1 A R1,R2
 3 INC, INC R3
 3 FFFC ANDI, ANDI R3,>FFFC
;ASM B *NEXT

Note how the operands are specified in the same order as standard TMS9900 assembly language;
the only difference at this point is that the instruction mnemonic has moved to the end.

5.1.1 - Enhanced Functionality
Note that, for enhanced clarity, the ability to use register numbers starting with R has been added.
This functionality is not included in the original TI-Forth assembler. For example, the above code
can be changed as follows, which makes it more readable:

5 of 30

TurboForth Assembler V1.0

Forth Assembler Conventional Assembler
ASM: EX1 DEF EX1
 R1 R2 A, EX1 A R1,R2
 R3 INC, INC R3
 R3 FFFC ANDI, ANDI R3,>FFFC
;ASM B *NEXT

5.2 - Symbolic Memory Addressing
Symbolic addressing is done with the @() word. It is used after the address. Note how, in the Forth
assembler, it is possible to refer to earlier defined Forth variables (and indeed other words,
constants etc.)

Forth Assembler Conventional Assembler
VARIABLE VAR1 VAR1 BSS 2
VARIABLE VAR2 5 VAR2 ! VAR2 DATA 5
ASM: EX2 DEF EX2
 VAR2 @() R1 MOV, EX2 MOV @VAR2,R1
 R1 2 SRC, SRC R1,2
 R1 VAR1 @() S, S R1,@VAR1
 VAR2 @() VAR1 @() SOC, SOC @VAR2,@VAR1
;ASM B *NEXT

5.2.1 - Enhanced Functionality
In addition to the @() notation shown above, Symbolic Memory Addressing can also be specified
by using the @@ notation, as found in the Wycove Forth assembler. This author finds the Wycove
notation much more readable than the TI-Forth notation. The modified code is shown below:

Forth Assembler Conventional Assembler
VARIABLE VAR1 VAR1 BSS 2
VARIABLE VAR2 5 VAR2 ! VAR2 DATA 5
ASM: EX2 DEF EX2
 VAR2 @@ R1 MOV, EX2 MOV @VAR2,R1
 R1 2 SRC, SRC R1,2
 R1 VAR1 @@ S, S R1,@VAR1
 VAR2 @@ VAR1 @@ SOC, SOC @VAR2,@VAR1
;ASM B *NEXT

6 of 30

TurboForth Assembler V1.0

The key to understanding this is simply to realise that when using an addressing mode, it simply
follows the operand to which you want it to apply.

Note how, in the example above @@ follows the VAR2 operand, giving us:

VAR2 @@
This is directly equivalent to @VAR2.

5.3 - Workspace Register Indirect Addressing
Workspace Register Indirect Addressing is done with the *? word. It is used after the register
number to which it pertains.

Forth Assembler Conventional Assembler
2000 CONSTANT XRAM XRAM EQU >2000
ASM: EX3 DEF EX3
 R1 XRAM LI, EX3 LI R1,XRAM
 R1 *? R2 MOV, MOV *R1,R2
;ASM B *NEXT

5.3.1 - Enhanced Functionality
In addition to the *? notation shown above, Workspace Register Indirect Addressing can also be
specified by using the ** notation, as found in the Wycove Forth assembler. The modified code is
shown below:

Forth Assembler Conventional Assembler
2000 CONSTANT XRAM XRAM EQU >2000
ASM: EX3 DEF EX3
 R1 XRAM LI, EX3 LI R1,XRAM
 R1 ** R2 MOV, MOV *R1,R2
;ASM B *NEXT

Once again, notice how the addressing mode, in this case *? or ** follows the register:

R1 **

…is directly equivalent to *R1.

7 of 30

TurboForth Assembler V1.0

5.4 - Workspace Register Indirect Auto-Increment Addressing
Workspace Register Indirect Auto-Increment Addressing is performed with the *?+ word. It is
used after the register to which it pertains:

Forth Assembler Conventional Assembler
2000 CONSTANT XRAM XRAM EQU >2000
ASM: EX4 DEF EX4
 R1 XRAM LI, EX4 LI R1,XRAM
 R1 *?+ R2 MOV, MOV *R1+,R2
;ASM B *NEXT

5.4.1 - Enhanced Functionality
In addition to the *?+ notation shown above, Workspace Register Indirect Auto-Increment
Addressing can also be specified by using the *+ notation, as found in the Wycove Forth assembler.
The modified code is shown below:

Forth Assembler Conventional Assembler
2000 CONSTANT XRAM XRAM EQU >2000
ASM: EX4 DEF EX4
 R1 XRAM LI, EX4 LI R1,XRAM
 R1 *+ R2 MOV, MOV *R1+,R2
;ASM B *NEXT

Once again, the important distinction is that the addressing mode follows the register to which it
pertains.

R1 *+ is equivalent to *R1+
The instruction MOV *R1+, *R2+ would be coded as R1 *+ R2 *+ MOV,

The ovals show the relationship between the register, and its addressing mode modifier.

8 of 30

TurboForth Assembler V1.0

5.5 - Indexed Memory Addressing
The final addressing type is Indexed Memory Addressing. This is performed with the @(?) word
used after the index and register, as shown below:

Forth Assembler Conventional Assembler
2000 CONSTANT XRAM XRAM EQU >2000
ASM: EX5 DEF EX5
 XRAM R1 @(?) R2 MOV, EX5 MOV @XRASM(R1),R2
 XRAM 22 + R2 @(?)
 XRAM 26 + R3 @(?) MOV,

 MOV XRAM+22@(R2),XRAM+26@(R3)

;ASM B *NEXT

5.5.1 - Enhanced Functionality
In addition to the @(?) notation shown above, Indexed Memory Addressing can also be specified
by using the () notation, as found in the Wycove Forth assembler. The modified code is shown
below:

Forth Assembler Conventional Assembler
2000 CONSTANT XRAM XRAM EQU >2000
ASM: EX5 DEF EX5
 XRAM R1 () R2 MOV, EX5 MOV @XRASM(R1),R2
 XRAM 22 + R2 ()
 XRAM 26 + R3 () MOV,

 MOV XRAM+22@(R2),XRAM+26@(R3)

;ASM B *NEXT

5.6 - Addressing Mode Words for Special Registers
In order to make addressing modes easier for the W, RP, IP, SP and NEXT registers, the
following words are available and eliminate the need to enter the register name separately:

Register Address Indirect Mode Indexed Mode Indexed Auto-
Increment Mode

W *W @(W) *W+
RP *RP @(RP) *RP+
IP *IP @(IP) *IP+
SP *SP @(SP) *SP+
NEXT *NEXT @(NEXT) *NEXT+

9 of 30

TurboForth Assembler V1.0

6 - Structured Assembler Constructs
This assembler also permits the user to write structured (label-less) code. This is done in a manner
very similar to the way that Forth implements conditional constructs. The major difference is that
rather than taking a value from the stack and using it as a true/false flag, the processor's status
register is used to determine whether or not to jump.

Using this technique, it is possible to use constructs such as IF,...ENDIF, and
BEGIN,...WHILE,...REPEAT, etc. in assembly code.

The following structured constructs are implemented:

• IF, … ENDIF,
• IF, … ELSE, … ENDIF,
• BEGIN, … UNTIL,
• BEGIN, … AGAIN,
• BEGIN, … WHILE, … REPEAT,

As noted above, these constructs work in the same way as their Forth counterparts, except that they
check the processor's status register, rather than take a value from the data stack.

Note:
The three conditional words (IF, UNTIL, and WHILE,) must each be preceded by one of the
jump tokens shown in the next section.

10 of 30

TurboForth Assembler V1.0

7 - Assembler Jump Tokens
The following assembler jump tokens are defined in the assembler. These jump tokens are used in
conjunction with conditional constructs in order to assembler jump instructions, as discussed in the
following sections.

Token Comment Instruction Used
EQ True if = JNE
GT True if signed > JGT $+1 JMP
GTE True if signed > or = JLT
HI True if unsigned > JLE
HE True if unsigned > or = JL
LO True if unsigned < JHE
LE True if unsigned < or = JH
LT True if signed < JLT $+1 JMP
LTE True if signed < or = JGT
NC True if no carry JOC
NE True if equal bit not set JEQ
NO True if no overflow JNO $+1 JMP
NP True if not odd parity JOP
OC True if carry bit is set JNC
OO True if overflow JNO
OP True if odd parity JOP $+1 JMP

Conditional constructs IF, UNTIL, and WHILE, must be preceded by a jump token from the
following table. This is because IF, UNTIL, and WHILE, actually assemble jump instructions
into your code, and the jump token tells the assembler which type of jump instruction to assemble.

The actual jump instruction assembled into your assembly language routine may appear to be
counter-intuitive. For example, if the EQ jump token is used, the actual instruction assembled is a
JNE (jump if not equal). The reason for this is simply that the assembler writes the code such that
the jump is taken if the condition is false:

11 of 30

TurboForth Assembler V1.0

Forth Assembly Style Actual Assembled Code Comment
R0 R0 MOV, MOV R0,R0 \ check R0
EQ IF, JNE xxx \ jump if R0 <> 0
 R2 INCT, INCT R2 \ else add 2 to R2
ENDIF,
R1 INC, INC R1 \ then increment R1

As can be seen, if the condition is false the code will jump over the IF block. The ENDIF,
construct causes the assembler to calculate the jump offset and complete the assembly of the jump
instruction. Constructs can be nested with no problems. The assembler will track and assemble the
appropriate jump instructions with the correct offsets automatically.

7.1 - Assembly Example for Structured Constructs
The following example is designed to show how these jump tokens and structured constructs are
used:

Forth Assembly Code 9900 Assembly Code Comment
(GENERALISED
SHIFTER)

* GENERALISED
SHIFTER

ASM: SHIFT (s v – v) DEF SHIFT \ begin assembly word
 *SP R0 MOV, SHIFT MOV *SP,R0 \ get value to shift from stack into R0
 SP DECT, DECT SP \ reduce stack pointer
 R0 R0 MOV, MOV R0,R0 \ check if value is 0
 NE IF, JEQ L3 \ just exit if yes
 *SP R1 MOV, MOV *SP,R1 \ get shift count from stack into R1
 GTE IF, JLT L1 \ if shift count is positive...
 R1 0 SLA, SLA R1,0 \ … then shift to the left
 ELSE, JMP L2 \ otherwise...
 R1 0 SRL, L1 SRL R1,0 \ … shift to the right
 ENDIF,
 R1 *SP MOV, L2 MOV R1,*SP \ move value back to the stack
 ENDIF,
;ASM L3 B *NEXT \ exit back to TurboForth

Note: The structured words shown above do not check to ensure that the jump target is within range
(+127,-128 words).

12 of 30

TurboForth Assembler V1.0

8 - Test Code
The following routines demonstrate use of the assembler. Each example increases in complexity in
terms of exercising the abilities and facilities of the assembler.

8.1 - Add two numbers
The following code takes two numbers from the stack, adds them, and places the result on the stack.
Functionally, it is equivalent to the Forth code word + though in practice, the code is slightly
different.

Forth Assembly Code Comment
ASM: ADD (n1 n2 – n1+n2) \ begin definition of assembly language word “ADD”
 *SP 0 MOV, \ get n2 in R0
 SP DECT, \ reduce stack pointer (now pointing at n1)
 *SP R1 MOV, \ get n1 in R1
 R0 R1 A, \ add n1 & n2 (result in R1)
 R1 *SP MOV, \ push result to stack
;ASM \ end definition of assembly language word

To test, simply type:

100 99 ADD .

8.2 - Fill screen with a character
The following program takes an ASCII code from the stack, and fills the screen with it. The
program directly sets the VDP Write Address and writes to the VDP write register. Note the use of
the BEGIN, … UNTIL, looping construct, which removes the requirement for a label. Also note
the use of the EQ jump token. The code will loop until the EQ bit in the 9900 status register is set.
Jump tokens are discussed in section 7, page 11, Assembler Jump Tokens.

See the next page for the code.

13 of 30

TurboForth Assembler V1.0

Code Comment
$8C02 CONSTANT VDPA \ address of VDP address register
$8C00 CONSTANT VDPW \ address of VDP write register

ASM: WIPE (ascii --) \ create assembly language word “WIPE”
 R0 CLR, \ screen address 0
 R2 960 LI, \ counter
 *SP SWPB, \ get ASCII value on stack in high byte
 BEGIN, \ begin a loop
 R0 SWPB, \ get address low byte
 R0 VDPA @@ MOVB, \ write low byte to address register
 R0 SWPB, \ get address high byte
 R0 VDPA @@ MOVB, \ write hi byte to address register
 *SP VDPW @@ MOVB, \ write to VDP write register
 R0 INC, \ move to next address
 R2 DEC, \ decrement counter
 EQ UNTIL, \ repeat loop if R2 is not 0
 SP DECT, \ remove ASCII value from the stack
;ASM \ end definition of assembly language word

To test, type:

65 WIPE
to fill the screen with A's

42 WIPE
to fill the screen with * symbols, etc.

14 of 30

TurboForth Assembler V1.0

8.3 - Nested Delay
The following code takes a value from the stack, and uses it as part of the outer loop value in a
nested delay. Nested delay loops are used to produce long delays.

The BEGIN, …. WHILE, … REPEAT, loop construct in the assembler works in the same way
as in high-level Forth: The loop starts at BEGIN,. At this point, a condition should be evaluated,
and the result fed to WHILE,. While the condition is true, execution will continue with the code
immediately following WHILE, and will loop back to the code immediately after BEGIN, upon
encountering REPEAT..

If the condition fed to WHILE, evaluates to false, the code jumps out of the loop, running the code
immediately after REPEAT,.

Code Comment
ASM: DELAY (delay --) \ begin assembly language word “DELAY”
 *SP R0 MOV, \ get loop factor from the stack
 SP DECT, \ reduce stack pointer
 BEGIN, \ begin a loop
 R0 R0 MOV, \ test R0 for 0
 NE WHILE, \ if not equal to zero then proceed, otherwise exit
 R1 $FFFF LI, \ load R1 with >FFFF
 BEGIN, \ begin another loop
 R1 DEC, \ decrement R1...
 EQ UNTIL, \ ...and continue to do so until R1=0
 R0 DEC, \ decrement R0
 REPEAT, \ jump back to the code immediately after BEGIN,
;ASM \ exit back to TurboForth

 Note the BEGIN, … UNTIL, loop nested inside the BEGIN, … REPEAT, loop. The assembler
compiles the appropriate jump instructions and calculates the jump offsets with no intervention (or
thought) required by the programmer.

15 of 30

TurboForth Assembler V1.0

9 - General Usage Notes
The following notes are offered to assist the Forth Assembly language developer. As will be seen,
integrating assembly language sub-routines into Forth applications is no more complex than
referencing the assembly language sub-routine by name. Data can also be passed between Forth
and assembly via the Forth data stack with ease, as shown.

9.1 - Using Your Own Workspace
It may be desirable to use your own workspace registers for some routines. TurboForth is quite
economical in it's use of registers; it uses R3, R4, R5 and R12 for its own use – all other registers
are available. However, where this is inconvenient you can use your own workspace by ALLOTing
data space within the dictionary, and using this space in your assembly language program:

Forth/Assembly Code Comment
CREATE WORKSPACE \ create an entry in the dictionary
32 CHARS ALLOT \ reserve 32 bytes of dictionary space
ASM: TEST \ create an assembly word called TEST
WORKSPACE LWPI, \ set CPU register workspace
 ...
 ...
 ...
;ASM

9.2 - Calling Other Code Words
Due to the ITC (Indirect Threaded Code) system employed in TurboForth (and indeed, most 16-bit
Forth systems) it is not possible to call other code words directly from inside another code word.
The reason for this is that all words in the Forth dictionary consist of a pointer field, which points to
the executable code, followed by the code itself.

For high-level Forth words, the address stored in the pointer field is the address of a routine called
DOCOL (do-colon) which pushes the current IP (instruction pointer) address to the return stack, so
that code may resume from the current address. This is how Forth words can be essentially
endlessly nested.

For machine language/assembly words, the address in the pointer field simply points to the next
word in memory, where the machine code is located.

What this means is that if you reference an assembly language word in another word, the pointer
address gets assembled into your definition, not the actual address of your executable code.

For example:

16 of 30

TurboForth Assembler V1.0

ASM: MULTIPLY
 R1 R8 MPY, \ multiply r1 by r8
 R11 ** B, \ return to the routine that called us
;ASM

ASM: DO-WORK
 R1 200 LI, \ load R1
 R8 4 LI, \ load R8
 MULTIPLY @@ BL, \ call the MULTIPLY sub-routine
;ASM \ exit to Forth
In the above example the word DO-WORK calls the word MULTIPLY to perform a multiply
function. However, the address of MULTIPLY, assembled into DO-WORK is incorrect, since the
pointer address is actually compiled. Assuming MULTIPLY is assembled at >B000, it would
actually look like this in memory:

Address Item/Value/Code Comment
>B000 >AF21 Pointer to previous dictionary entry
>B002 >0008 Length of name of word
>B004 M U L T I P L Y The name of the word
>B00C >B00E Pointer to executable code
>B00E MPY R1,R8 The multiply instruction
>B010 B *R11 Return to the calling routine
>B012 B *R12 Assembled by ;ASM

So, when MULTIPLY is referenced in DO-WORK the pointer address (>B00C) not the address of
the code gets assembled – clearly wrong.

The solution is not to use BL (branch and link) to 'chain' sub-routines together. Rather, use a high-
level Forth word to 'glue' your assembly language sub-routines together. Using this approach, the
“pointer problem” is completely avoided, and actually adds a significant benefit, as it allows
assembly language words to be nested easily without any additional code, since the Forth system
takes care of nesting and de-nesting via the return stack (assembly language programmers will be
used to the 'problem' of having to save the contents of R11 if wishing to nest calls via the BL
instruction).

Let us look at how the problem could be solved using high-level Forth. In addition, we will expand
the code to use our own workspace.

17 of 30

TurboForth Assembler V1.0

CREATE WORKSPACE \ create dictionary entry for our workspace
16 CELLS ALLOT \ reserve space for 16 registers

ASM: MULTIPLY
 WORKSPACE LWPI, \ use our workspace
 R1 R8 MPY, \ do the multiply
;ASM

ASM: DO-WORK
 WORKSPACE LWPI, \ use our workspace
 R1 200 LI, \ load R1
 R8 4 LI, \ load R8
;ASM

: TEST-ASM DO-WORK MULTIPLY ; \ “chain” DO-WORK and MULTIPLY

Notice how the call to MULTIPLY has been removed from the assembly language word DO-
WORK. Now, the Forth word TEST-ASM 'links' the two assembly routines together. Because they
use their own, private (from Forth's perspective) workspace, they can safely use any register, and
even leave data behind in a register(s) for other routines to pick up and use.

Let us look at a more useful example. In this example, we wish to create an assembly routine to
fetch a random number from the VDP interrupt timer at >8379 and make it available to us in the
TurboForth environment by pushing the value to the data stack. However, we will separate the
fetching of the random number, and the pushing to stack into separate routines, since the action of
pushing a value to the data stack could be used in multiple places, therefore it makes sense to
'factor' it into its own sub-routine.

First, the routine to get a number from the VDP interrupt timer:
ASM: RND
 2 LIMI, \ enable interrupts
 0 LIMI, \ disable interrupts
 R0 CLR, \ clear R0
 $8379 @@ R0 MOVB, \ move random number (0 to 255) to R0
 R0 SWPB, \ move value to the low byte in R0
;ASM
Next, the routine to push a value in R0 to the stack. Since this is a subroutine, we will also
document the code:

18 of 30

TurboForth Assembler V1.0

ASM: PUSH-R0 (– n)
 \ takes a value in R0 and pushes it to the data stack
 SP INCT, \ make space on the return stack
 R0 *SP MOV, \ move the value in R0 to the stack
;ASM
We can now use high-level Forth to get a random number, using
these two routines:

: GET-RND (– n) RND PUSH-R0 ;
This can be tested with:

GET-RND .
Caution:
This particular example exposes the programmer to a certain amount of risk. The issue is that data is
left in R0 by RND for PUSH-R0 to use later on. In this particular example, there is no risk, since
PUSH-R0 is called directly after RND in the Forth word GET-RND. As it happens, the TurboForth
inner interpreter does not use R0, so the data stored in R0 remains untouched. However, there is no
such guarantee if another resident TurboForth word is called “inbetween” calls to RND and PUSH-
R0. For example:

: GET-RND (- n) RND PAGE PUSH-R0 ;
This example calls PAGE (which clears the screen) before calling PUSH-R0. It so happens that
PAGE uses R0, so the data left by RND is overwritten.

Therefore, if your assembly language sub-routines will be “bridged” using high-level Forth colon
definitions, and you wish to pass data between them you must either provide a separate workspace
for them, or use the data stack.

9.3 - Mixing Forth and Assembly Language in an ASM:
Definition

It might not be immediately obvious, but when you are writing assembly language instructions in
TurboForth, you are actually writing Forth code. Words such as MOV, INC, DECT, ABS, etc.
are all high level Forth colon definitions that simply compile op-codes to the current position in
memory.

It is easy to fall into the “trap” of thinking that when you type ASM: to begin an assembly language
word that you change into some special 'mode' that leaves the Forth environment behind, and enters
an assembly language environment. This actually isn't true at all. You are still “in Forth” with all of
the facilities of the Forth system and environment at your disposal.

The stack is heavily used by the assembler, just as it is in Forth. Let us look at an example:
R1 $1234 LI,

Here, R1 is loaded with the value 1234 hex. However, it is not immediately obvious but what
happened is this:

19 of 30

TurboForth Assembler V1.0

• R1 is a high-level Forth word, which pushes 1 to the stack;

• $1234 simply goes on the stack, as does any number in Forth;

• LI, is a high-level Forth word that takes two numbers from the stack, and encodes them
into an LI op-code.

What this means is that you can use Forth to enhance your assembly language code, with practically
unlimited power at your disposal.

For example, the above code might theoretically be replaced with something like:
R1 GET-VALUE LI,

Where GET-VALUE is a standard Forth colon definition that pushes some value to the stack. In
fact, we could use our earlier example in our assembly language code:

R1 GET-RND LI,
Here, the word we previously built to return a random number to the stack is directly used in an
assembly language definition. What would actually happen here is that at assembly time (when the
LI instruction is physically compiled/assembled to memory) a random number would be chosen
(using previously assembled assembly language routines to generate the number) and pushed to the
data stack. LI, would then simply use that value and assemble it into the LI instruction.

We could take this a step further. Let us assume we have built a Forth application that relies on a
number of assembly routines to do work for us. In those routines, we have used R13 as a holding
register (a routine places data in R13 for another routine to access later).

However, at some point, it becomes inconvenient to use R13, and we instead wish to use R14. We
can do this in one simple action, by using a CONSTANT:

14 CONSTANT HREG \ holding register is R14
ASM: SOME-THING
 HREG GET-RND LI,
 …
 …
;ASM

Here, instead of referencing R14 throughout our assembly code, we reference HREG instead. Thus,
if we want to change the holding register designation, we only have to change the constant, in one
place. The assembly language source code remains unchanged.

Of course, you could use extremely complex Forth words in your assembly code that carry out
complex calculations, or fetch some data from a disk block, or a disk file – you have the complete
functionality of Forth at your disposal.

20 of 30

TurboForth Assembler V1.0

9.4 - Accessing Forth Strings from Assembly Language
At some point you may wish to access a string from inside your assembly language routine, to read
the string and perhaps modify it in some way. Here, we will discuss an assembly language routine
that can changes all lower case characters in a string to upper case. The string will be declared
“Forth side” using Forth nomenclature and we will call an assembly language routine to do the case
conversion for us.

For example, when the code is complete, it will be possible to execute:
S” this is an upper case string!” >UCASE TYPE

and see the output

THIS IS AN UPPER CASE STRING!
First, we need to discuss strings in TurboForth, and indeed Forth in general. Strings are a little
strange in Forth, because you can 'execute' them. Indeed, this is how one gains access to strings in
Forth. When one “executes” a string, the address, and the length of the string are pushed to the
stack. Once we have this information, we can access/manipulate the string in any way.

Type this into TurboForth as an example:
S” Hello, world!”

You will see two values pushed to the stack, which you can examine with .S. We can feed this
directly into TYPE and have the string echoed back to us:

S” I AM FORTH” TYPE
Indeed, we can place a string in a colon definition, and it will behave the same way:

: STRING S” Hello Mother!” ;
STRING TYPE

The fact that we get the address of the string, and its length is very useful to us, and we will make
use of this in the following assembly language sub-routine.

The following sub-routine expects the address and the length of the string to be on the stack before
the routine is called (obviously). It will leave the address and the length on the stack, unchanged, so
that other words such as TYPE may immediately access the string after processing. Only characters
between ASCII codes 97 (a) and 122 (z) will be modified. Any other characters in the string are left
unchanged.

Subroutine follows on the next page:

21 of 30

TurboForth Assembler V1.0

Code Comment
ASM: >UCASE \ declare assembly language word >UCASE
 *SP R0 MOV, \ get the string length from stack into R0
 -2 SP () R1 MOV, \ get the string address in R1 [MOV @-2(SP),R1]
 R2 CLR, \ we'll use r2 for byte-wise operations, so clear it
 BEGIN, \ begin a loop
 R1 ** R2 MOVB, \ get a character from the string into r2
 R2 CHAR a 256 * CI, \ compare the upper byte to 'a'
 HE IF, \ if higher or equal to 'a' then...
 R2 CHAR z 256 * CI, \ ...compare the upper byte to 'z'
 LE IF, \ if lower or equal to 'z' then we are in range, so...
 R2 -32 256 * AI, \ ...subtract 32 from the value in the upper byte
 ENDIF,
 ENDIF,
 R2 R1 *+ MOVB, \ move the byte back to memory
 R0 DEC, \ decrement the length counter
 EQ UNTIL, \ loop back to BEGIN if R0 is not 0
;ASM \ exit back to Forth

Assemble the above code and test with:
S” hello mother! How are you today?” >UCASE TYPE
The above would perhaps look scarcely familiar, even to the experienced assembly language
programmer; however, the above code is an excellent example of leveraging the full power of the
combination of Forth and assembly code.

As can be seen, we have actually applied high-level programming constructs such as looping, IF
and ENDIF to low-level assembly code. Note that there are no labels used in the above code, and no
jump instructions (they are compiled into the code for us by the assembler, “behind the scenes”). In
addition, we have mixed Forth code into the assembly source code to do some grunt-work for us at
assembly time.

Whilst the RPN nature of the code is initially confusing, it actually becomes quite natural quite
quickly (this author has been using the assembler less than 24 hours at the time of writing, and is
having no difficulty making the mental adjustment), especially if one uses R notation for register
names, and uses the Wycove addressing notation, which aligns much better to 9900 assembly than
the original TI-Forth addressing mode notation.

22 of 30

TurboForth Assembler V1.0

9.4.1 - Code Breakdown
We will now examine the above code line-by-line and discuss how it works, and the techniques
employed. Standard 9900 assembler is also shown so that one can compare the difference in syntax.
ASM: >UCASE
The above begins a new assembly language definition called >UCASE. In Forth parlance, where a
> preceeds a word, it generally means “to”. Thus this word could be called “to upper case”.

*SP R0 MOV, [MOV *SP,R0]
Here we get the contents of the top word of the stack (the length of the string) into register R0. SP is
a 'special' register name, and is equivalent to R4. See section 3, TurboForth's Workspace Registers,
on page 4 for a description of special register names.

-2 SP () R1 MOV, [MOV @-2(SP),R1]
Here we get the second value on the stack (the value “underneath” the length) which is the address
of the string.

R2 CLR, [CLR R2]
Since we will be working with single bytes, we need a register to hold them. Bytes are always
operated on in the upper (high) byte of a register, so we zero this register before we start.

BEGIN,
We now begin a loop. This is simply a 'return' point to return to if the exit condition of the loop is
not satisfied. In practice, the code loops to the instruction immediately after BEGIN,. BEGIN, itself
is a place holder.

R1 ** R2 MOVB, [MOVB *R1,R2]
Here, we read a byte from the string, and place it into the upper byte of R2.

R2 CHAR a 256 * CI, [CI R2,'a'*256]
At this point, we have mixed Forth and assembly together. We want the ASCII code of 'a' (97) in the
upper byte, because the character we are examining is in the upper byte. Therefore we actually want
97*256. However, rather than calculate 97*256 (24832 decimal) we ask Forth to work it out for us
by using the CHAR command. CHAR pushes the ASCII character of the character immediately
following it to the stack. We then multiply it by 256. Note that this calculation takes place at
assembly time, not run-time, so what actually gets assembled is CI R2,24832 (or, in hex,
CI R2,>6100)

23 of 30

TurboForth Assembler V1.0

HE IF, [JL xxxx]
If the character is higher or equal to >6100 (which is ASCII 97 in the upper byte) then we enter this
IF block. Other wise we skip it completely.

R2 CHAR z 256 * CI, [CI R2,'z'*256]
If we do enter the IF block, then we check to see if the character is less than or equal to a 'z'
character. Again, we get Forth to calculate the value of ASCII code 112*256, using CHAR.

We could have instead written it as R2 112 256 * CI, however the “112” doesn't really show any
context. By using CHAR z it is much clearer that we are performing a comparison to the 'z'
character.

LE IF, [JH xxxx]
Here, if the character code is less than or equal to 'z' then we know that our character is in the target
a-z range, so we enter the IF block. Otherwise, the character lies outside the range, and we skip the
IF block.

R2 -32 256 * AI, [AI R2,-32*256]
If the character is in range, then we subtract 32 from its value to convert it to upper case. Since the
value is in the upper byte, we need 32*256. Finally, since there is no “subtract immediate”
instruction in 9900 assembly language, we use the AI (add immediate) instruction, so we need to
add -32*256 to the value in R2.

ENDIF, [none]
This marks the end of the 'inner' IF block (the part that executes if the character is in range). It
generates no code, it simply resolves the offset of the JH instruction, allowing the code following
the JH instruction to be skipped if the condition is not met.

ENDIF, [none]
Again, this generates no code, it simply resolves the offset of the JL instruction (the section that
checks for 'a' or greater) allowing the code to jump over if the condition is not met.

R2 R1 *+ MOVB, [MOVB R2,*R1+]
Here we write the character value (which may, or may not have been modified) back to the same
address in the buffer. We also increment the buffer pointer address.
R0 DEC, [DEC R0]
We then decrement R0 (length)

24 of 30

TurboForth Assembler V1.0

EQ UNTIL, [JNE xxxx]
When R0 reaches 0 the EQ flag will be set in the status register. The EQ UNTIL, causes the code to
loop back (to the instruction following BEGIN,) until the EQ flag is on (i.e. until R0=0)

;ASM [B *NEXT]
This ends the assembly language definition and assembles the appropriate exit code (a B* R12)
instruction into the definition, which returns back to the Forth system.

25 of 30

TurboForth Assembler V1.0

10 - TurboForth Assembler Code
The following represents the code for the TurboForth Assembler. The code here is shown starting on
block 9, but in practice it can be located anywhere. The code occupies 5 blocks in source-code
form, and compiles into 2.7K of object code when loaded.

Block 9
00: .(Loading assembler V1.0...)
01: 0 CONSTANT R0 1 CONSTANT R1
02: 2 CONSTANT R2 3 CONSTANT R3
03: 4 CONSTANT R4 5 CONSTANT R5
04: 6 CONSTANT R6 7 CONSTANT R7
05: 8 CONSTANT R8 9 CONSTANT R9
06: 10 CONSTANT R10 11 CONSTANT R11
07: 12 CONSTANT R12 13 CONSTANT R13
08: 14 CONSTANT R14 15 CONSTANT R15
09: CHAR . EMIT -->
10:
11:
12:
13:
14:
15:

26 of 30

TurboForth Assembler V1.0

Block 10
00: : ASM: BL WORD HEADER HERE 2+ , LATEST @ HIDDEN ;
01: : ;ASM $045C , LATEST @ HIDDEN ;
02: : ?PAIRS XOR ABORT" Conditionals not paired" ;
03: : ERROR CR ." Block " BLK @ . ." line " >IN @ 64 / .
04: 1 2 ?PAIRS ;
05: BASE @ >R HEX
06: : GOP' OVER DUP 1F > SWAP 30 < AND IF + , , ELSE + , THEN ;
07: : GOP CREATE , DOES> @ GOP' ;
08: 0440 GOP B, 0680 GOP BL, 0400 GOP BLWP,
09: 04C0 GOP CLR, 0700 GOP SETO, 0540 GOP INV,
10: 0500 GOP NEG, 0740 GOP ABS, 06C0 GOP SWPB,
11: 0580 GOP INC, 05C0 GOP INCT, 0600 GOP DEC,
12: 0640 GOP DECT, 0480 GOP X,
13: CHAR . EMIT -->
14:
15:
Block 11
00: : GROP CREATE , DOES> @ SWAP 40 * + GOP' ;
01: 2000 GROP COC, 2400 GROP CZC, 2800 GROP XOR,
02: 3800 GROP MPY, 3C00 GROP DIV, 2C00 GROP XOP,
03:
04: : GGOP CREATE , DOES> @ SWAP DUP DUP 1F > SWAP 30 < AND
05: IF 40 * + SWAP >R GOP' R> , ELSE 40 * + GOP' THEN ;
06: A000 GGOP A, B000 GGOP AB, 8000 GGOP CMP, 9000 GGOP CB,
07: 6000 GGOP S, 7000 GGOP SB, E000 GGOP SOC, F000 GGOP SOCB,
08: 4000 GGOP SZC, 5000 GGOP SZCB, C000 GGOP MOV, D000 GGOP MOVB,
09:
10: : 0OP CREATE , DOES> @ , ;
11: 0340 0OP IDLE, 0360 0OP RSET, 03C0 0OP CKOF,
12: 03A0 0OP CKON, 03E0 0OP LREX, 0380 0OP RTWP,
13:
14: CHAR . EMIT -->
15:

27 of 30

TurboForth Assembler V1.0

Block 12
00: : ROP CREATE , DOES> @ + , ; 02C0 ROP STST, 02A0 ROP STWP,
01: : IOP CREATE , DOES> @ , , ; 02E0 IOP LWPI, 0300 IOP LIMI,
02: : RIOP CREATE , DOES> @ ROT + , , ;
03: 0220 RIOP AI, 0240 RIOP ANDI, 0280 RIOP CI, 0200 RIOP LI,
04: 0260 RIOP ORI,
05: : RCOP CREATE , DOES> @ SWAP 10 * + + , ;
06: 0A00 RCOP SLA, 0800 RCOP SRA, 0B00 RCOP SRC, 0900 RCOP SRL,
07:
08: : DOP CREATE , DOES> @ SWAP 00FF AND OR , ;
09: 1300 DOP JEQ, 1500 DOP JGT, 1B00 DOP JH, 1400 DOP JHE,
10: 1A00 DOP JL, 1200 DOP JLE, 1100 DOP JLT, 1000 DOP JMP,
11: 1700 DOP JNC, 1600 DOP JNE, 1900 DOP JNO, 1800 DOP JOC,
12: 1C00 DOP JOP, 1D00 DOP SBO, 1E00 DOP SBZ, 1F00 DOP TB,
13:
14: : GCOP CREATE , DOES> @ SWAP 000F AND 40 * + GOP' ;
15: 3000 GCOP LDCR, 3400 GCOP STCR, CHAR . EMIT -->
Block 13
00: : @() 020 ; : *? 010 + ; : *?+ 030 + ;
01: : @(?) 020 + ; : W 06 ; : @(W) W @(?) ;
02: : *W W *? ; : *W+ W *?+ ; : RP 05 ;
03: : @(RP) RP @(?) ; : *RP RP *? ; : *RP+ RP *?+ ;
04: : IP 03 ; : @(IP) IP @(?) ; : *IP IP *? ;
05: : *IP+ IP *?+ ; : SP 04 ; : @(SP) SP @(?) ;
06: : *SP SP *? ; : *SP+ SP *?+ ; : NXT 0C ;
07: : *NXT+ NXT *?+ ; : *NXT NXT *? ; : @(NXT) NXT @(?) ;
08: : GTE 1 ; : HI 2 ; : NE 3 ; : LO 4 ; : LTE 5 ; : EQ 6 ;
09: : OC 7 ; : NC 8 ; : OO 9 ; : HE 0A ; : LE 0B ; : NP 0C ;
10: : LT 0D ; : GT 0E ; : NO 0F ; : OP 10 ;
11: : CJMP CASE LT OF 1101 , 0 ENDOF GT OF 1501 , 0 ENDOF
12: NO OF 1901 , 0 ENDOF OP OF 1C01 , 0 ENDOF
13: DUP 0< OVER 10 > OR IF ERROR THEN DUP
14: ENDCASE 100 * 1000 + , ;
15: CHAR . EMIT -->

28 of 30

TurboForth Assembler V1.0

Block 14
00: : IF, CJMP HERE 2- 42 ; IMMEDIATE
01: : ENDIF, 42 ?PAIRS HERE OVER - 2- 2 / SWAP 1+ C! ; IMMEDIATE
02: : ELSE, 42 ?PAIRS 0 CJMP HERE 2- SWAP 42 [COMPILE] ENDIF,
03: 42 ; IMMEDIATE
04: : BEGIN, HERE 41 ; IMMEDIATE
05: : UNTIL, SWAP 41 ?PAIRS CJMP HERE - 2 / 00FF AND HERE 1- C!
06: ; IMMEDIATE
07: : AGAIN, 0 [COMPILE] UNTIL, ; IMMEDIATE
08: : REPEAT, >R >R [COMPILE] AGAIN, R> R> 2- [COMPILE] ENDIF,
09: ; IMMEDIATE
10: : WHILE, [COMPILE] IF, 2+ ; IMMEDIATE
11: \ Wycove assembler register syntax:
12: : @@ @() ; : ** *? ; : *+ *?+ ; : () @(?) ;
13: : RT R11 ** B, ; R> BASE !
14: XY? NIP 0 SWAP GOTOXY .(Assembler loaded. Usage:)
15: .(ASM: TEST 1 2 MOV, 3 4 A, ;ASM)

10.1 - Errors Corrected from the Original Source Code
References to ?EXEC in the original TI-Forth code have been removed as ?EXEC is not used in
F83.

There are erroneous [COMPILE] CJMP sequences in IF, ELSE, and UNTIL, which are not
required as CJMP is not immediate. These have also been removed.

29 of 30

TurboForth Assembler V1.0

11 - Conclusion
The ability to write assembly language code directly from within TurboForth, or load and assemble
assembly language source code directly from blocks represents a major leap forward in the power
and versatility of TurboForth. High level code constructs such as looping and IF...THEN blocks
allow one to apply high-level programming paradigms to low level assembly code, removing
completely the requirement for error-prone labels.

Further, the ability to mix, completely freely, assembly language mnemonics and high-level Forth
code in an assembly definition provides unprecedented power and flexibility. High-level Forth
words can be used to add complex macro like functionality to the assembly language programmer.

This author has been truly delighted and empowered by the extra flexibility afforded by the
assembler, and hopes that other users of TurboForth will give it a try and 'unleash' the power of the
Forth and assembly language.

30 of 30

	1 - Introduction to the TurboForth 9900 Assembler
	2 - TMS900 Assembly Mnemonics
	3 - TurboForth's Workspace Registers
	4 - Using the Assembler
	5 - TMS9900 Addressing Modes with the Forth Assembler
	5.1 - Workspace Register Addressing
	5.1.1 - Enhanced Functionality

	5.2 - Symbolic Memory Addressing
	5.2.1 - Enhanced Functionality

	5.3 - Workspace Register Indirect Addressing
	5.3.1 - Enhanced Functionality

	5.4 - Workspace Register Indirect Auto-Increment Addressing
	5.4.1 - Enhanced Functionality

	5.5 - Indexed Memory Addressing
	5.5.1 - Enhanced Functionality

	5.6 - Addressing Mode Words for Special Registers

	6 - Structured Assembler Constructs
	7 - Assembler Jump Tokens
	7.1 - Assembly Example for Structured Constructs

	8 - Test Code
	8.1 - Add two numbers
	8.2 - Fill screen with a character
	8.3 - Nested Delay

	9 - General Usage Notes
	9.1 - Using Your Own Workspace
	9.2 - Calling Other Code Words
	9.3 - Mixing Forth and Assembly Language in an ASM: Definition
	9.4 - Accessing Forth Strings from Assembly Language
	9.4.1 - Code Breakdown

	10 - TurboForth Assembler Code
	10.1 - Errors Corrected from the Original Source Code

	11 - Conclusion

